The Rebecca Klemm Conjecture: from Numeracy to New Insights

Print

From August 3rd to 6th, 2016, Rebecca Klemm is presenting a provocative proposition to the elite mathematicians of the Math Association of America. The Rebecca Klemm Conjecture proposes that any polygon can be decomposed into an infinite series of polygons with the same number of sides. The conjecture has important ramifications in fields as diverse as IT security and medical imaging.

Even more intriguing than the implications of Rebecca’s conjecture is the story of its basis in developing new learning tools for early STEM education. Rebecca is the founder of NumbersAlive!®, which works to develop foundational numeracy through blended learning that restores math to its origins as a language for describing the world. To develop Number Linx® and help learners link numbers to their physical manifestations as shapes, she began breaking the familiar regular polygons into irregular polygons with the same number of sides. Dividing the polygons again and again, Rebecca realized that the process was infinite!

Rebecca’s story, from her conjecture’s origin in early education tools to its revolutionary implications for science and technology, demonstrates the power of her unique approach to numeracy. For Rebecca, numeracy is not the ability to perform superficial manipulation, but understanding where numbers come from and how they relate to the world. Rebecca’s path to to her conjecture shows what wonderful discoveries await students who learn to use numbers creatively!